
IGCSE Computer Studies 0420
Unit 4: Algorithm design

Recommended Prior Knowledge
Students need to have studied unit 3, systems analysis, before beginning this unit.

Context
The rest of the systems life cycle is covered in this unit.

Outline
The aim of this unit is to cover the design, development, implementation, maintenance and review principles, which include techniques and tools which relate to the
solution to a problem. A study of these topics is reinforced through practical work and illustrated by a consideration of existing problem solutions in computer
applications. Candidates should have experience of representing algorithms informally (as structure diagrams, flowcharts, step sequences, descriptions).

AO Learning outcomes Suggested Teaching activities Learning resources
3.1 Defining the scope of separate

modules

Designing algorithms which relate
clearly to the requirements of the
system

Develop several examples to demonstrate what an algorithm
is and how they are written. For example:

• adding two numbers together
• finding average of 2 or more numbers
• finding largest and smallest numbers in an input set
• sorting out ranges of numbers (e.g. if a series of

temperatures were input how many were in the range -
20 to 0, 0 to 20 and over 20)

• use of formulae (e.g. convert oF to oC)

http://www.theteacher99.btinternet.co.uk/theteache
r/gcse/newgcse/module6/task12.htm a basic
introduction to the stages
http://www.teach-
ict.com/as_a2/topics/system_life_cycle/slc/index.ht
m provides a more in-depth look at the systems life
cycle
http://www.theteacher99.btinternet.co.uk/theteache
r/gcse/newgcse/others/algorithms.htm provides a
good introduction using a real life example

 C+W 9.2

 Explaining algorithms and how they

relate to the system

Explaining how hardware needs arise
from the output required from the
system

Algorithm tools

The above could be further extended to look at more complex
problems from real life situations.

All this links into 3.2 (unit 5) where pseudocode could be
produced as part of the algorithmic design. The use of flow
charts as an algorithmic tool shouldn’t be overlooked – it is a
very useful exercise to develop the solution to a problem
using a flow chart and then convert into pseudocode later on.

http://www.theteacher99.btinternet.co.uk/theteache
r/gcse/newgcse/others/algorithms.htm provides a
good introduction using a real life example
http://www.smartdraw.com/tutorials/flowcharts/wha
tis.htm provides a tutorial on how to draw
flowcharts
http://www.sharewareorder.com/WizFlow-
Flowcharter-screenshot-2401.htm some free

 1

www.XtremePapers.com

http://www.theteacher99.btinternet.co.uk/theteacher/gcse/newgcse/module6/task12.htm
http://www.theteacher99.btinternet.co.uk/theteacher/gcse/newgcse/module6/task12.htm
http://www.teach-ict.com/as_a2/topics/system_life_cycle/slc/index.htm
http://www.teach-ict.com/as_a2/topics/system_life_cycle/slc/index.htm
http://www.teach-ict.com/as_a2/topics/system_life_cycle/slc/index.htm
http://www.theteacher99.btinternet.co.uk/theteacher/gcse/newgcse/others/algorithms.htm
http://www.theteacher99.btinternet.co.uk/theteacher/gcse/newgcse/others/algorithms.htm
http://www.theteacher99.btinternet.co.uk/theteacher/gcse/newgcse/others/algorithms.htm
http://www.theteacher99.btinternet.co.uk/theteacher/gcse/newgcse/others/algorithms.htm
http://www.smartdraw.com/tutorials/flowcharts/whatis.htm
http://www.smartdraw.com/tutorials/flowcharts/whatis.htm
http://www.sharewareorder.com/WizFlow-Flowcharter-screenshot-2401.htm
http://www.sharewareorder.com/WizFlow-Flowcharter-screenshot-2401.htm
http://www.studentbounty.com/
http://www.studentbounty.com

AO Learning outcomes Suggested Teaching activities Learning resources

Interpreting and testing algorithms

But for more complex problems, sometimes the use of a flow
chart only may be entirely appropriate (also links into
systems flowcharts – unit 3). This should lay the foundations
for the student’s project work.

flowcharting software
http://www.ictgcse.com/sub_projects/ictgcse_th_sy
sflow.htm an introduction to flowcharts

 C+W 9.2, 9.3 and 9.4

 Use examples of algorithms and practice dry running, use

some algorithms that work and some that don’t, use different
sets of test data.
Once algorithms (both in flow chart and pseudocode form)
have been developed it is essential to test them out. Carrying
out a dry run with various sets of test data is essential here.

The test data should be carefully chosen to cover:

• examples where the final output is known so the test

data merely demonstrates the correctness of the
algorithm

• examples of test data which shouldn’t work (e.g.
inputting negative numbers into a wages calculation) –
this may be testing validation rules

• examples of test data which tests the extremes (e.g.
input somebody's age as 110 or 1)

• finally input test data as a genuine run of the program
once all the above testing has indicated the robustness
of the algorithm

C+W 10 provides useful practical examples.

 2

http://www.ictgcse.com/sub_projects/ictgcse_th_sysflow.htm
http://www.ictgcse.com/sub_projects/ictgcse_th_sysflow.htm
http://www.studentbounty.com/
http://www.studentbounty.com

